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Abstract

The Dirac equation in (1+1) dimensions with a non-local PT -symmetric
potential of separable type is studied by means of the Green’s function method:
properties of bound and scattering states are derived in full detail and numerical
results are shown for a potential kernel of Yamaguchi type, inspired by the
treatment of low-energy nucleon–nucleon interaction.

PACS numbers: 03.65.Ge, 03.65.Nk, 03.65.Pm, 11.30.Er, 11.55.Ds

1. Introduction

Since the pioneering papers by Bender and coworkers [1, 2], the study of non-Hermitian
Hamiltonians invariant under spacetime reflection has developed into a branch of quantum
mechanics in its own, called PT -symmetric quantum mechanics. The large majority of
analyses have been devoted to bound state problems, where the observation that PT -
symmetric Hamiltonians with eigenfunctions that are eigenstates of PT have real spectra
has led to Hermitian-equivalent formulations, where one can define a linear operator C,
commuting with Hamiltonian H and with PT , that permits constructing time-independent
inner products with positive-definite norms of the form

∫ +∞
−∞ �(x)CPT �(x) dx (see [3] for a

review).
PT -symmetric quantum mechanics has a close connection with the more general quasi-

Hermitian quantum mechanics [4–6], where H is called quasi-Hermitian if it satisfies the
intertwining relation H † = η+Hη−1

+ , with η+ a positive-definite Hermitian operator called the
metric operator, playing a role analogous to CP .

While bound states of PT -symmetric Hamiltonians are nowadays well understood, many
more questions remain open in the treatment of scattering states: for instance, it has been
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shown in [7] that even simple local potentials require introducing non-local metric operators
and non-standard boundary conditions with progressive and regressive waves not only in the
initial but also in the final state. Even if the latter feature might be removed by an appropriate
choice of the metric operator, called quasi-local in [8, 9], a satisfactory general approach has
not been formulated yet. This is why the majority of studies on scattering by PT -symmetric
Hamiltonians have been made within the framework of standard quantum mechanics, breaking
unitarity of the corresponding scattering matrices (see [11] and references therein). Even at
this effective level, PT -symmetric potentials are peculiar, in the sense that, depending on their
parameters, they may behave as absorptive for progressive waves and generative for regressive
ones (or vice versa), a property called handedness in [10], or it may happen that they are
neither absorptive, nor generative, because the sum of the square moduli of transmission
and reflection coefficients may be smaller than one, or greater than one in different intervals
of incident energy; they can even conserve unitarity when the asymptotic wavefunctions
are eigenstates of PT : in this latter case they are necessarily reflectionless [11]. As is
known, the reflection of progressive (left-to-right) and regressive (right-to-left) waves is quite
asymmetric (RL→R �= RR→L) already in the case of local potentials, where the transmission
is the same; in the case of non-local potentials [12], the transmission is asymmetric,
too (TL→R �= TR→L). Indeed, non-local potentials have more subtle PT -transformation
properties than local potentials, for which T invariance and Hermiticity requirements
coincide [11].

The scenario is even richer in relativistic quantum mechanics, where, again, the majority of
studies have been dedicated to bound states of PT -symmetric potentials in the Klein–Gordon
and Dirac equations in (1+1) spacetime dimensions. Limiting ourselves to the Dirac equation,
of interest to the present work, we may quote the pseudo-supersymmetric description [13, 14]
of scalar or pseudo-scalar local potentials with exact, or spontaneously broken PT symmetry,
the PT -symmetric version of the generalized Hulthén vector potential [15], the combinations
of scalar (position-dependent mass) and vector potentials of [16–19].

Making again an effective approach to scattering aspects, we have examined in a recent
work [20] the Dirac equation with the time component of a vector potential in the form of
a PT -symmetric square well: when the real depth exceeds 2m, with m the particle mass,
transmission resonances at negative energies appear as the signature of spontaneous pair
production, but become weaker with increasing imaginary depth and negligible beyond the
critical value at which real bound states disappear.

In the present work, which extends the non-relativistic results of [11, 12], we consider a
scalar and vector combination of non-local separable potentials in the (1+1)-dimensional Dirac
equation, aimed in particular at the study of symmetries known in their three-dimensional form
as the spin and pseudo-spin symmetries, the latter being experimentally observed in atomic
nuclei. Numerical results will be consistently obtained from the PT -symmetric version
of a solvable potential originally proposed by Yamaguchi for the description of bound and
scattering states of the neutron–proton system.

Since this kind of potential has received until now moderate attention within the framework
of PT -symmetric quantum mechanics, and, to our knowledge, no attention at all in its
relativistic version, we consider it worthwhile to perform a detailed, albeit effective analysis
by means of the Green’s function method described in section 2. The scattering matrix is then
studied in section 3 and two non-relativistic limits for the particular choices of the ratio of
vector and scalar couplings corresponding to spin and pseudo-spin symmetry are discussed in
section 4. Bound states are studied in section 5 and numerical results obtained with a kernel
corresponding to the Yamaguchi potential are discussed in section 6. Section 7 is dedicated
to conclusions and perspectives of future work.
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2. Green’s function approach

Let us start with the (1+1)-dimensional Dirac equation with a vector-plus-scalar non-local
potential, written in units h̄ = c = 1

i
∂

∂t
�(x, t) = (−iαx

∂

∂x
+ βm)�(x, t) + (cSβ + cV )

∫ +∞

−∞
dyK(x, y)�(y, t)

≡ (αxpx + βm)�(x, t) + (cSβ + cV )

∫ +∞

−∞
dyK(x, y)�(y, t)

≡ (HD�)(x, t). (1)

A stationary wave, �(x, t) = �(x) e−iEt , satisfies the equation

(HD�)(x) = E�(x). (2)

Here, αx and β are 2×2 anticommuting Dirac matrices with unit square, α2
x = β2 = (

1 0
0 1

) ≡ 12,

which can be identified with two Pauli matrices: in the present work we adopt the Dirac

representation [21] αx = σx ≡ (
0 1
1 0

)
, β = σz ≡ (

1 0
0 −1

)
, particularly suited to the study of the

non-relativistic limit of the model. cS and cV are the real strengths of the scalar potential and
of the time component of the vector potential, respectively, with the common PT -symmetric
kernel K(x, y) = K∗(−x,−y).

Here, as in our previous work [20] on the one-dimensional Dirac equation with a PT -
symmetric square well, we have the parity operator P in the Dirac representation

P = eiθPP0σz (3)

where P0 changes x into −x and θP is an arbitrary phase factor. In the same representation,
the time reversal operator T reads

T = eiθT σzK (4)

whereK performs complex conjugation and θT is an arbitrary phase factor. With the convenient
choice θT = −θP the PT operator takes the form

PT = P0K (5)

also adopted in non-relativistic quantum mechanics [11, 12].
It is worthwhile to point out that formula (1) does not contain the most general

Hamiltonian: for instance, we might add a pseudo-scalar interaction by extending the matrix of
coupling strengths to cSβ+cV +icP αxβ. The method of solution described in this section could
be applied even to the most general case, but we do not consider it explicitly, because we are
mainly interested in interaction potentials that permit decoupling the two integro-differential
equations satisfied by the two components of �, so as to obtain a clear definition of their
non-relativistic limits, as will be shown in detail in section 4.

In order to deal with a solvable model, we assume a separable kernel of the form

K(x, y) = g(x) eiaxh(y) eiby, (6)

where a and b are real numbers and the real functions g and h are even functions of their
arguments, g(x) = g(−x) and h(y) = h(−y), so as to assure PT invariance. When g = h

and a = b = 0, the kernel becomes real symmetric and coincides with that of [22]. When
g = h and a = −b the kernel becomes Hermitian, since in that case K(x, y) = K∗(y, x).

Now we solve equation (2) by means of the Green’s function method already used for the
one-dimensional Schrödinger equation with the same type of potential [11, 12]. The Green’s
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function method had already been used in the solution of a scalar-plus-vector real non-local
separable potential in [22] and of a pure vector potential in [23].

Two linearly independent Green’s functions, G+(x, x ′) and G−(x, x ′), for the time-
independent Dirac equation (2) are solutions to the equation(

−iαx

∂

∂x
+ βm − (E ± iε)

)
G±(x, x ′) = δ(x − x ′), (7)

where a small imaginary component ε (> 0) is added to the energy, E, in order to remove the
energy poles from the contour of the complex integral defining G±(x, x ′), as discussed in the
following part of this section. G+(x, x ′) and G−(x, x ′) are related to the Laplace transform
with respect to time of the retarded and advanced component of the causal Green’s function,
respectively, as shown in appendix A.

Equation (7) is easily solved in momentum space after introducing the Fourier transforms
G̃±(q, q ′)

G±(x, x ′) = 1

(2π)2

∫ +∞

−∞
dq eiqx

∫ +∞

−∞
dq ′ eiq ′x ′

G̃±(q, q ′) (8)

and the Fourier representation of the Dirac δ function

δ(x − x ′) = 1

2π

∫ +∞

−∞
dq eiq(x−x ′). (9)

After inserting formulae (8)–(9) into equation (7) we quickly obtain G̃±(q, q ′) in the form

G̃±(q, q ′) = lim
ε→0+

2π(αxq + βm − E ∓ iε)−1δ(q + q ′)

= 2π lim
ε→0+

αxq + βm + E ± iε

q2 + m2 − (E ± iε)2
δ(q + q ′). (10)

Therefore, we obtain for the Green’s functions in configuration space

G±(x, x ′) ≡ G±(x − x ′) = 1

2π
lim

ε→0+

∫ +∞

−∞
dq eiq(x−x ′) αxq + βm + E ± iε

q2 + m2 − (E ± iε)2
, (11)

which can be easily computed by the method of residues. Let us start with G+(x − x ′): after
defining k2 = E2 − m2, we observe that the integrand has two simple poles at q1 = −k − iε′

and q2 = +k + iε′, where ε′ = εE/k. For x − x ′ � 0 the integration contour is closed in the
upper q half-plane, including the pole at q = q2, while for x − x ′ < 0 the contour is closed
in the lower q half-plane, including the pole at q = q1 with a global − sign, because the
integration is done in the clockwise direction. The result is

G+(x − x ′) = i

2k
[θ(x − x ′) eik(x−x ′)(αxk + βm + E)

+ θ(x ′ − x) e−ik(x−x ′)(−αxk + βm + E)]

= i

2k
eik|x−x ′ |(kαxsgn(x − x ′) + βm + E), (12)

in agreement with [22]. In the same way we compute G−(x − x ′), after observing that for
x−x ′ � 0 the integration contour in the upper q half-plane now includes a pole at q3 = −k+iε′

while, for x −x ′ < 0, the contour is closed in the clockwise direction in the lower q half-plane
around a pole at q4 = +k − iε′. The result is

G−(x − x ′) = − i

2k
[θ(x − x ′) e−ik(x−x ′)(−αxk + βm + E)

+ θ(x ′ − x) eik(x−x ′)(αxk + βm + E)]

= − i

2k
e−ik|x−x ′ |(−kαxsgn(x − x ′) + βm + E). (13)
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Summing up

G±(x − x ′) = ± i

2k
e±ik|x−x ′ |(±kαxsgn(x − x ′) + βm + E). (14)

It is immediate to check that

G−(x − x ′) = PT G+(x − x ′)(PT )−1.

3. Scattering matrix

By exploiting the results of the preceding section, we can define two linearly independent
solutions to equation (2), �+(x) and �−(x), in the implicit form

�±(x) = �±
free(x) −

∫ +∞

−∞
dx ′G±(x − x ′)(cSβ + cV )

∫ +∞

−∞
dyK(x ′, y)�±(y)

= �±
free(x) −

∫ +∞

−∞
dx ′G±(x − x ′)(cSβ + cV )g(x ′) eiax ′

∫ +∞

−∞
dyh(y) eiby�±(y).

(15)

In equation (15), �±
free(x) is the general solution to the Dirac equation for a free particle,

conveniently written in the matrix notation of [21]

�±
free(x) =

(
eikx e−ikx

λeikx −λe−ikx

)
·
(

A±
B±

)
=

(
A± eikx + B± e−ikx

λA± eikx − λB± e−ikx

)
, (16)

where λ ≡ k/(E + m) = √
(E − m)/(E + m) and A± and B± are arbitrary constants. It is

worthwhile to point out that G±(x − x ′) and cSβ + cV are non-commuting 2 × 2 matrices;
therefore, their order is not arbitrary.

After defining I± ≡ ∫ +∞
−∞ dyh(y) eiby�±(y), we multiply both sides of equation (15)

by h(x) eibx and integrate them over x from −∞ to +∞. Remembering that f̃ (q) =∫ +∞
−∞ dx e−iqxf (x) is the Fourier transform of f (x) and observing that f (x) = f (−x) implies

f̃ (q) = f̃ (−q), we promptly obtain

I± =
(

A±h̃(k + b) + B±h̃(k − b)

λA±h̃(k + b) − λB±h̃(k − b)

)

−
∫ +∞

−∞
dx h(x) eibx

∫ +∞

−∞
dx ′G±(x − x ′)(cSβ + cV )g(x ′) eiax ′

I±

=
(

A±h̃(k + b) + B±h̃(k − b)

λA±h̃(k + b) − λB±h̃(k − b)

)
− N±(cSβ + cV )I±, (17)

where N± ≡ ∫ +∞
−∞ dx h(x) eibx

∫ +∞
−∞ dx ′G±(x − x ′)g(x ′) eiax ′

. Therefore, the spinor I± is
explicitly given by the relation

I± = (12 + N±(cSβ + cV ))−1 ·
(

A±h̃(k + b) + B±h̃(k − b)

λA±h̃(k + b) − λB±h̃(k − b)

)
, (18)

once we have determined the 2×2 matrix N±, which, according to formula (14), is conveniently
rewritten as

N± = ± i

2k

∫ +∞

−∞
dx h(x) eibx

∫ +∞

−∞
dx ′g(x ′) eiax ′

[e±ik(x−x ′)(±αxk + βm + E)θ(x − x ′)

+ e∓ik(x−x ′)(∓αxk + βm + E)θ(x ′ − x)]

= ± i

2k
[N(1)

± (±αxk + βm + E) + N
(2)
± (∓αxk + βm + E)], (19)

5
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where

N
(1)
± (a, b, k) ≡

∫ +∞

−∞
dx h(x) eibx

∫ +∞

−∞
dx ′g(x ′) eiax ′

e±ik(x−x ′)θ(x − x ′) (20)

and

N
(2)
± (a, b, k) ≡

∫ +∞

−∞
dx h(x) eibx

∫ +∞

−∞
dx ′g(x ′) eiax ′

e∓ik(x−x ′)θ(x ′ − x). (21)

It is worthwhile to point out the following symmetry relation:

N
(j)
+ (−a,−b, k) = (N

(j)
− (a, b, k))∗ (j = 1, 2). (22)

After introducing the linear combinations

S±(a, b, k) ≡ N
(1)
± (a, b, k) + N

(2)
± (a, b, k),

(23)
D±(a, b, k) = N

(1)
± (a, b, k) − N

(2)
± (a, b, k),

with symmetry relations

S+(−a,−b, k) = (S−(a, b, k))∗,D+(−a,−b, k) = (D−(a, b, k))∗, (24)

N± becomes

N± = i

2k
[D±αxk ± S±(βm + E)]. (25)

We now specialize to the Dirac representation, already introduced in section 2, αx =
σx, β = σz. After some simple algebra, we obtain

N± =
(

±i S±
2λ

iD±
2

iD±
2 ±i S±λ

2

)
, (26)

M± ≡ 12 + N±(cSβ + cV )

=
(

1 ± i
2

S±
λ

(cV + cS)
i
2D±(cV − cS)

i
2D±(cV + cS) 1 ± i

2λS±(cV − cS)

)
. (27)

In order to compute I± from formula (18), we need the inverse of M±

M−1
± = 1

det M±

(
1 ± i

2λS±(cV − cS) − i
2D±(cV − cS)

− i
2D±(cV + cS) 1 ± i

2
S±
λ

(cV + cS)

)
, (28)

with

det M± =
(

1 ± i

2
λS±(cV − cS)

) (
1 ± i

2

S±
λ

(cV + cS)

)
+

D2
±

4

(
c2
V − c2

S

)
= 1 ± i

2
S±

(
λ(cV − cS) +

1

λ
(cV + cS)

)
+

c2
V − c2

S

4

(
D2

± − S2
±
)

= 1 ± i
S±
k

(cV E + cSm) +
c2
V − c2

S

4

(
D2

± − S2
±
)
. (29)

Note that, as a consequence of relations (22)–(24),

det M−(−a,−b, k) = (det M+(a, b, k))∗. (30)

We are now in a position to express the asymptotic forms of the wavefunctions �±(x)

and the transmission and reflection coefficients for progressive and regressive waves in terms
of known quantities. For the sake of clarity, let us consider �+(x) and �−(x) separately.

6
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In order to determine the asymptotic behaviour of �+(x), we observe that

lim
x→±∞ G+(x − x ′) = i

2
e±ik(x−x ′)

(
1
λ

±1

±1 λ

)
. (31)

Therefore, in particular

lim
x→+∞ �+(x) = A+

(
1
λ

)
eikx + B+

(
1

−λ

)
e−ikx

− i

2

∫ +∞

−∞
dx ′ eik(x−x ′) eiax ′

g(x ′)
( 1

λ
1

1 λ

)
·
(

cV + cS 0
0 cV − cS

)
· I+

= A+

(
1
λ

)
eikx + B+

(
1

−λ

)
e−ikx

− i

2
g̃(a − k)

(
cV +cS

λ
cV − cS

cV + cS λ(cV − cS)

)
· I+ eikx . (32)

If we impose the condition that �+(x) is a progressive wave, travelling from left to right
(L → R), we can put A+ = 1 and B+ = 0 in the preceding equation. After deriving from
formula (18), the explicit form of I+

I+ = h̃(k + b)

det M+

(
1 + i

2λS+(cV − cS) − i
2λD+(cV − cS)

− i
2D+(cV + cS) + λ + i

2S+(cV + cS)

)
, (33)

the above limit can be rewritten after some algebra in the form

lim
x→+∞ �+(x) =

(
1

λ

)
eikx

×
[

1 − i

2
g̃(a − k)̃h(k + b)

2
k
(cV E + cSm) + i

(
c2
V − c2

S

)
(S+ − D+)

1 + S+
k
(cV E + cSm) + 1

4

(
c2
V − c2

S

)(
D2

+ − S2
+

)]
(34)

allowing us to determine the transmission coefficient, TL→R , since we must have

lim
x→+∞ �+(x) = TL→R

(
1
λ

)
eikx . (35)

From comparison of the rhs of equations (34) and (35) we obtain

TL→R = 1 − i

2
g̃(a − k)̃h(k + b)

2
k
(cV E + cSm) + i

(
c2
V − c2

S

)
(S+ − D+)

1 + i S+
k
(cV E + cSm) + 1

4

(
c2
V − c2

S

)(
D2

+ − S2
+

) . (36)

In the same way we can compute the reflection coefficient, RL→R , starting from

lim
x→−∞ �+(x) =

(
1
λ

)
eikx − i

2
e−ikx

∫ +∞

−∞
dx ′ ei(k+a)x ′

g(x ′)
( 1

λ
−1

−1 λ

)
·
(

cV + cS 0

0 cV − cS

)
· I+

=
(

1
λ

)
eikx − i

2
e−ikx g̃(k + a)

(
cV +cS

λ
cS − cV

−(cV + cS) λ(cV − cS)

)
· I+. (37)

Using again formula (33) for I+, we obtain after some simple algebra

lim
x→−∞ �+(x) =

(
1
λ

)
eikx − i

2

g̃(k + a)̃h(k + b)

det M+

(cV + cS

λ
+ λ(cS − cV )

)(
1

−λ

)
e−ikx, (38)

7
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where det M+ is given by formula (29). On the other hand, we must have

lim
x→−∞ �+(x) =

(
1
λ

)
eikx + RL→R

(
1

−λ

)
e−ikx . (39)

From formulae (38) and (39) we promptly obtain

RL→R = − i

k
g̃(k + a)̃h(k + b)

cV m + cSE

1 + i S+
k
(cV E + cSm) + 1

4

(
c2
V − c2

S

)(
D2

+ − S2
+

) . (40)

In order to compare our results with those of [22] for a real symmetric kernel, with
g(x) = h(x) ≡ v(x) and a = b = 0, we observe that, in this limit, D+ = 0 and
S+ ≡ J = ∫ +∞

−∞ dx
∫ +∞
−∞ dx ′ eik|x−x ′ |v(x)v(x ′). J is promptly expressed in terms of the

Fourier transform of v(x), ṽ(k) ≡ ∫ +∞
−∞ dxv(x) e−ikx . In fact

J = JR + iJI =
∫ +∞

−∞
dx

∫ +∞

−∞
dx ′v(x)v(x ′)[cos k|x − x ′| + i sin k|x − x ′|], (41)

where

JR =
∫ +∞

−∞
dx

∫ +∞

−∞
dx ′v(x)v(x ′) cos k(x − x ′)

=
∫ +∞

−∞
dx

∫ +∞

−∞
dx ′v(x)v(x ′) eik(x−x ′) = ṽ(k)̃v(−k) = (̃v(k))2 (42)

and

iJ1 = J − JR = J − (ν̃(k))2 (43)

Thus, in the same limit, we obtain S+ − g̃(k)̃h(k) = J − (̃v(k))2 = J − JR = iJI and
S2

+ − 2̃g(k)̃h(k)S+ = J (J − 2JR) = −JJ ∗ = −|J |2. Therefore, our |TL→R|2, from formula
(36), coincides with formula (13) of [22] and our |RL→R|2, from formula (40), with formula
(14) of the same reference, as expected.

Let us now consider the second Green’s function, G−(x−x ′), whose asymptotic behaviour
is

lim
x→±∞ G−(x − x ′) = − i

2
e∓ik(x−x ′)

(
1
λ

∓1

∓1 λ

)
. (44)

Therefore, in particular

lim
x→−∞ �−(x) = A−

(
1
λ

)
eikx + B−

(
1

−λ

)
e−ikx

+
i

2

∫ +∞

−∞
dx ′ eik(x−x ′) eiax ′

g(x ′)

(
1
λ

1

1 λ

)
·
(

cS + cV 0
0 cV − cS

)
· I−

=
[
A−

(
1
λ

)
+

i

2
g̃(a − k)

(
cS+cV

λ
cV − cS

cS + cV λ(cV − cS)

)
· I−

]
eikx + B−

(
1

−λ

)
e−ikx .

(45)

We can impose the condition that �−(x) is a regressive wave, travelling from right to left
(R → L), so that

lim
x→−∞ �−(x) = TR→L

(
1

−λ

)
e−ikx . (46)

8
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Comparison of formulae (45) and (46) yields⎧⎨⎩
B− = TR→L

A−

(
1
λ

)
+

i

2
g̃(a − k)

(
cS+cV

λ
cV − cS

cS + cV λ(cV − cS)

)
· I− =

(
0
0

)
. (47)

In the same way

lim
x→+∞ �−(x) = A−

(
1
λ

)
eikx + B−

(
1

−λ

)
e−ikx

+
i

2

∫ +∞

−∞
dx ′ e−ik(x−x ′) eiax ′

g(x ′)
( 1

λ
−1

−1 λ

)
·
(

cS + cV 0
0 cV − cS

)
· I−

= A−

(
1
λ

)
eikx +

[
B−

(
1

−λ

)
+

i

2
g̃(a + k)

×
(

cS+cV

λ
cS − cV

−(cS + cV ) λ(cV − cS)

)
· I−

]
e−ikx . (48)

Since we know that

lim
x→+∞ �−(x) =

(
1

−λ

)
e−ikx + RR→L

(
1
λ

)
eikx, (49)

we obtain ⎧⎪⎨⎪⎩
A− = RR→L

B−

(
1

−λ

)
+

i

2
g̃ (a + k)

(
cS+cV

λ
cS − cV

−(cS + cV ) λ(cV − cS)

)
· I− =

(
1

−λ

)
. (50)

Remembering the expression of I− from formulae (18)–(28), (29), and rewriting it more
compactly as

I− = 1

det M−

(
1 − i

2λS−(cV − cS) − i
2λD−(cV − cS)

− i
2D−(cV + cS) 1 − i

2
S−
λ

(cV + cS)

)
·
(

S

λD

)
, (51)

with S ≡ A h̃(k + b) + B−h̃(k − b) = RR→Lh̃(k + b) + TR→Lh̃(k − b) and D ≡
RR→Lh̃(k + b) − TR→Lh̃(k − b), we obtain from equations (47)–(50) a system of two linear
equations in the unknowns S and D⎧⎪⎪⎨⎪⎪⎩

A− +
i

2

g̃(a − k)

det M−
P+ = 0

B− +
i

2

g̃(a + k)

det M−
P− = 1,

(52)

with

P± =
[
cS + cV

λ
− i

2

(
c2
V − c2

S

)
(S− ± D−)

]
S ±

[
λ(cV − cS) − i

2

(
c2
V − c2

S

)
(S− ± D−)

]
D

≡ P
(S)
± S + P

(D)
± D, (53)

where

P
(S)
± ≡

[
cS + cV

λ
− i

2

(
c2
V − c2

S

)
(S− ± D−)

]
,

(54)

P
(D)
± ≡ ±

[
λ(cV − cS) − i

2

(
c2
V − c2

S

)
(S− ± D−)

]
.

9
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The transmission and reflection coefficients are thus obtained by solving the system (52)

TR→L = S − D

2̃h(k − b)
= det M−

(
2 det M− + ĩg(a − k)̃h(k + b)

(
P

(D)
+ + P

(S)
+

))
dS

,

(55)

RR→L = S + D

2̃h(k + b)
= ĩg(a − k)̃h(k − b) det M−

(
P

(D)
+ − P

(S)
+

)
dS

,

with

dS = 2(det M−)2 + ĩg(a − k)̃h(k + b) det M−
(
P(D)

+ + P(S)
+

)
− ĩg(a + k)̃h(k − b) det M−

(
P

(D)
− − P

(S)
−

)
+ g̃(a + k)̃g(a − k)̃h(k + b)̃h(k − b)

(
P(S)

+ P
(D)
− − P

(S)
− P(D)

+

)
. (56)

Formulae (55) can be further simplified by noting that

P(D)
+ + P(S)

+ = 2
cV E + cSm

k
− 2i

(
c2
V − c2

S

)
N

(1)
− ,

P
(D)
− − P

(S)
− = −2

cV E + cSm

k
+ 2i

(
c2
V − c2

S

)
N

(2)
− ,

P(S)
+ P

(D)
− − P

(S)
− P(D)

+ = −2
(
c2
V − c2

S

)
det M−.

It turns out that
dS

det M−
= 2

{
det M− + i

cV E + cSm

k
[̃g(a − k)̃h(k + b) + g̃(a + k)̃h(k − b)]

+
(
c2
V − c2

S

)
[̃g(a − k)̃h(k + b)N

(1)
− + g̃(a + k)̃h(k − b)N

(2)
−

− g̃(a + k)̃g(a − k)̃h(k + b)̃h(k − b)]

}
= 2 det M+. (57)

The last step is proved in detail in appendix B. With the above result, formulae (55) are
written as

TR→L = det M− + g̃(a − k)̃h(k + b)
[
i cV E+cSm

k
+

(
c2
V − c2

S

)
N

(1)
−

]
det M+

,

(58)

RR→L = − g̃(a − k)̃h(k − b)
[
i cV E+cSm

k
+

(
c2
V − c2

S

)
N

(2)
−

]
det M+

.

It is straightforward to verify that [12]

TL→R(−a,−b) = TR→L(a, b), RL→R(−a,−b) = RR→L(a, b). (59)

The scattering matrix, S, can be defined as in [11]

S =
(

TL→R RR→L

RL→R TR→L

)
. (60)

The general properties of the S matrix obtained in [11] in the case of P, T , or PT
invariance of the Hamiltonian hold in relativistic quantum mechanics, too. In particular, PT
symmetry of the Hamiltonian implies

S−1 = S∗, (61)

or
|det S| = 1,

|TL→R| = |TR→L|,
Im(RL→RR∗

R→L) = 0.

(62)

10
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TL→R and TR→L have the same modulus, but different phase: the latter property,
characteristic of non-local potentials, is discussed in particular in [11] and [12].

Finally, the last of conditions (62) implies that RR→L and RL→R have the same phase,
although they have different moduli, since unitarity is broken.

4. Symmetries and non-relativistic limits

Equation (2) is equivalent to a pair of coupled differential equations in the two components of

the Dirac spinor �(x) = (
�1(x)

�2(x)

)
; in the Dirac representation, where αx = σx and β = σz

⎧⎪⎪⎨⎪⎪⎩
(m − E)�1(x) − i

∂

∂x
�2(x) + (cS + cV )

∫ +∞

−∞
dyK(x, y)�1(y) = 0

−i
∂

∂x
�1(x) − (m + E)�2(x) + (cV − cS)

∫ +∞

−∞
dyK(x, y)�2(y) = 0.

(63)

For arbitrary values of the coupling strengths, cS and cV , the above equations do not
decouple; decoupling occurs when cV = ±cS . The method of solution described in the
preceding section remains valid and the final results for the reflection and transmission
coefficients are still given by formulae (36)–(40) for progressive waves and by formulae
(55) for regressive waves, even if intermediate formulae are different.

In (3+1) dimensions, the cases cV = cS and cV = −cS are examples of Bell–Ruegg
symmetries [24], where the Dirac Hamiltonian commutes with the generators of an SU(2)

group, constructed with Dirac matrices and the momentum operator. The eigenstates of the
Dirac Hamiltonian belong to the carrier space of the spinor representation of such a group and
are thus doubly degenerate. When cV = cS , the members of the doublet have the same radial
quantum number nr , the same orbital momentum l and total angular momentum j = l ± 1

2
(spin symmetry). When cV = −cS , they have quantum numbers

(
nr, l, j = l + 1

2

)
and(

nr − 1, l + 2, j = l + 3
2

)
, i.e. the same pseudo-orbital momentum l̃ = l + 1 and pseudo-spin

s̃ = 1
2 , so that j = l̃ ± 1

2 (pseudo-spin symmetry). The mean field of heavy nuclei exhibits
an approximate pseudo-spin symmetry, experimentally known for many years, but correctly
explained as a relativistic effect only few years ago [25]. At a phenomenological level, the
approximate pseudo-spin symmetry naturally arises in relativistic mean field models, where
the nuclear mean field is in practice the sum of an attractive scalar field (the σ field) and of a
repulsive vector field (the ω field) of almost the same strength. At a more fundamental level,
it can be obtained from sum rules of quantum chromodynamics in nuclear matter [26].

Let us consider the case cV = cS = c first. We promptly obtain in this case⎧⎪⎪⎨⎪⎪⎩
− ∂2

∂x2
�1(x) + 2c(m + E)

∫ +∞

−∞
dyK(x, y)�1(y) = (E2 − m2)�1(x) ≡ k2�1(x)

�2(x) = −i

m + E

∂

∂x
�1(x).

(64)

The above system is suited to the study of the non-relativistic limit (E → m + k2

2m
, with

k2

2m

 m), where the first equation of system (64), satisfied by �1, becomes a Schrödinger

equation with a non-local potential of strength s = 2c and kernel K. �2, being proportional to
∂
∂x

�1, does not obey a Schrödinger-like equation.

11
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In this limit, the transmission and reflection coefficients obtained in the preceding section
simplify considerably. In fact, from formulae (36)–(40) we promptly obtain, for cV = cS = c

and E → m + k2

2m⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
lim

E→m+ k2
2m

TL→R = 1 − i
2cm

k

g̃(k − a)̃h(k + b)

1 + i 2cm
k

S+

lim
E→m+ k2

2m

RL→R = −i
2cm

k

g̃(k + a)̃h(k + b)

1 + i 2cm
k

S+
,

(65)

in agreement with formulae (153) of [11], where 2cm
k

is indicated with ω and 1
1+i 2cm

k
S+

with D+,

not to be confused with the D+ integral defined in formulae (23) of the preceding section. It
is worthwhile to recall that [11] uses units 2m = 1, as is common in non-relativistic quantum
mechanics.

In the same way, we obtain, after some simple algebra⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
lim

E→m+ k2
2m

TR→L = 1 − i
2cm

k

g̃(k + a)̃h(k − b)

1 + i 2cm
k

[−S− + g̃(k − a)̃h(k + b) + g̃(k + a)̃h(k − b)]

lim
E→m+ k2

2m

RR→L = −i
2cm

k

g̃(k − a)̃h(k − b)

1 + i 2cm
k

[−S− + g̃(k − a)̃h(k + b) + g̃(k + a)̃h(k − b)]
,

(66)

which coincide with formulae (156) of [11], where i 2cmS−
k

is indicated with N−, not to be
confused with the N− matrix defined in formula (26).

In the case cV = −cS = c′, �1 and �2 interchange their role, because the two decoupled
equations now are⎧⎪⎪⎨⎪⎪⎩

�1(x) = −i

E − m

∂

∂x
�2(x)

− ∂2

∂x2
�2(x) + 2c′(E − m)

∫ +∞

−∞
dyK(x, y)�2(y) = (E2 − m2)�2(x) ≡ k2�2(x).

(67)

The formulae of transmission and reflection coefficients now depend on E − m, to be
replaced in the non-relativistic limit by the kinetic energy k2

2m
. In that limit, the second

equation (67), satisfied by �2, becomes a Schro′′dinger equation with an energy-dependent
coupling strength s(k) = c′k2/(2m2), while �1 is not a solution to a Schro′′dinger equation.

The final expressions are⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
lim

E→m+ k2
2m

TL→R = 1 − ic′k
2m

g̃(k − a)̃h(k + b)

1 + i c′k
2m

S+

lim
E→m+ k2

2m

RL→R = i
c′k
2m

g̃(k + a)̃h(k + b)

1 + i c′k
2m

S+

(68)

and⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
lim

E→m+ k2
2m

TR→L = 1 − i
c′k
2m

g̃(k + a)̃h(k − b)

1 + ic′k
2m

[−S− + g̃(k − a)̃h(k + b) + g̃(k + a)̃h(k − b)]

lim
E→m+ k2

2m

RR→L = i
c′k
2m

g̃(k − a)̃h(k − b)

1 + ic′k
2m

[−S− + g̃(k − a)̃h(k + b) + g̃(k + a)̃h(k − b)]
.

(69)

As expected, the above formulae have the same structure as those in the case cV = cS , with
the constant strength s = 2c replaced with the energy-dependent strength s(k) = c′k2/(2m2).

12
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For arbitrary values of cV and cS the equations (63) do not decouple, unless the potential
becomes local, K(x, y) = δ(x − y)V (x). As a consequence, in the particular case of a purely
scalar potential, cV = 0, we do not obtain the pseudo-supersymmetric scheme of [13], which
holds for local potentials only.

Summing up, the cases cV = ±cS , reflecting the Bell–Ruegg symmetries [24] in one
dimension, reduce the two-dimensional manifold [�1, �2] to the one-dimensional manifold
�1 when cV = cS , or �2 when cV = −cS , the latter case being relevant for nuclear physics.

5. Bound states with real energy

The PT symmetry of the potential kernel, K, permits the general statement that either bound
state energies are real, or that they come in complex conjugate pairs: in fact, if �(x) is the
solution to the stationary Dirac equation with energy E and momentum px

(E − αxpx − βm)�(x) − (cSβ + cV )

∫ +∞

−∞
dyK(x, y)�(y) = 0, (70)

PT �(x) = �∗(−x) is the solution to the Dirac equation with energy E∗ and momentum
−p∗

x :

(E∗ + αxp
∗
x − βm)PT �(x) − (cSβ + cV )

∫ +∞

−∞
dyK∗(−x,−y)PT �(y) = 0. (71)

We now treat in particular bound states �bs(x) with real energy and imaginary momentum
px = −p∗

x and investigate the relation between �bs(x) and PT �bs(x). From now on, the
quantum number k is no more real and positive, as defined in section 2, but complex.

The Green’s function formalism permits not only derivation of scattering, but also of
bound state wavefunctions. As is known, bound state energies are located in the interval
−m < E < +m, where the square of the momentum, k2 = E2 − m2, is negative, i.e., k = ik
is imaginary. Bound state wavefunctions can be obtained by analytic continuation of one
of the two independent scattering solutions, e. g. �+(x) from formula (15), to the positive
imaginary k-axis, i.e. we can take k = √

m2 − E2 > 0, and impose the boundary conditions
limx→±∞ �+(x) = 0. Owing to the fact that the Green’s function G+ vanishes at x = ±∞
when k = ik, we must get rid of the free-wave contribution, by putting A+ = B+ = 0. We
thus obtain

�bs(x) = −
∫ +∞

−∞
dx ′g(x ′) eiax ′

G+(x − x ′)(cSσz + cV )I+ (k = ik). (72)

Remembering expression (14) for G+(x − x ′),�bs(x) can be put in the form

�bs(x) = − 1

2k
{e−kxI1(x)(ikσx + mσz + E) + ekxI2(x)(−ikσx + mσz + E)}(cSσz + cV )I+,

(73)

where

I1(x) ≡
∫ x

−∞
dx ′g(x ′) e(ia+k)x ′

(74)

and

I2(x) ≡
∫ +∞

x

dx ′g(x ′) e(ia−k)x ′
. (75)

The normalizability of �bs is easily checked by noting that limx→±∞ e−kxI1(x) =
limx→±∞ ekxI2(x) = 0.

13
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From definitions (74)–(75), remembering that g(x ′) = g(−x ′), it is easy to verify that

I2(x) = I∗
1 (−x) = PT I1(x). (76)

The integral equation (72) allows us to compute bound state energies, too. By multiplying
both sides by h(x) eibx and integrating them over x from −∞ to +∞, we obtain

I+ = −
∫ +∞

−∞
dx h(x) eibx

∫ +∞

−∞
dx ′g(x ′) eiax ′

G+(x − x ′)(cSσz + cV )I+, (77)

or, remembering definition (27) of matrix M+(
1 +

∫ +∞

−∞
dx h(x) eibx

∫ +∞

−∞
dx ′g(x ′) eiax ′

G+(x − x ′)(cSσz + cV )

)
I+

≡
(

M11
+ M12

+

M21
+ M22

+

)(
I 1

+

I 2
+

)
= 0. (78)

Note that, since M±(ik) = PT M±(ik)(PT )−1, if I± is the solution of equation (78),
PT I± is a solution, too.

The necessary condition for a non-trivial solution of the above equation

det M+ = 1 +
cV E + cSm√

m2 − E2
S+ +

(
c2
V − c2

S

)
4

(
D2

+ − S2
+

) = 0, (79)

where S+ and D+ are functions of k(E), fixes bound state energies as the roots of the equation
in the interval −m < E < +m. Not surprisingly, bound states correspond to poles of the
transmission coefficient TL→R (36).

Equation (78) allows one to express the ratio of the components of I+ in terms of M+

matrix elements. In general, one observes that M22
+ = 1 + i λ

2 (cV − cS)S+ �= 0, so that one
can exploit the second equation (78), which gives I 2

+ = −(
M21

+

/
M22

+

)
I 1

+ and �bs(x) can be
written as

�bs(x) = − I 1
+

2k

{
e−kxI1(x)

(
E + m ik

ik E − m

)
+ ekxI2(x)

(
E + m −ik
−ik E − m

)}
(

cV + cS 0
0 cV − cS

) (
1

− i
2

(cV −cS)D+

1+i λ
2 (cV −cS)S+

)
. (80)

In the above formula, the modulus of I 1
+ is to be determined from normalization of the

wavefunction �bs(x). It is easy to check that �bs(x) is eigenstate of PT , since the matrices
in curly brackets are PT symmetric, owing to relation (76) and the ratio r = − i

2
(cV −cS)D+

1+i λ
2 (cV −cS)S+

is real. In fact, from definitions (20)–(21), we see that, for k = ik,N
(2)
+ (ik) = (N

(1)
+ (ik))∗;

thus, S+(ik) ≡ N
(1)
+ (ik) + N

(2)
+ (ik) = 2Re(N(1)

+ (ik)) is real, D+(ik) ≡ N
(1)
+ (ik) − N

(2)
+ (ik) =

2i Im(N
(1)
+ (ik)) is imaginary and λ = ik/(E + m) is imaginary, too, so that, as a final result, r

is real and PT �bs(x) = �bs(x), if I 1
+ is chosen to be real.

Considering that D+ and S+ do not depend on cV , or cS , equation (79) can also be used
to determine either potential strength (cV or cS), provided the other is fixed, in particular set
to zero, in such a way to obtain a bound state at a given energy E in the (−m, +m) range. In
this procedure, however, PT symmetry is not automatically preserved, since equation (79)
is of the second degree in the unknown potential strength and might have a pair of complex
conjugate solutions.

We have derived our expressions for bound-state wavefunctions starting from �+(x), but
we could, alternatively, start from �−(x) and determine the constants A− and B− from the
boundary conditions limx→±∞ �−(x) = 0. In this case, both A− and B− must be different
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from zero because of the asymptotic behaviour of G− and appear as the solution of a system
of two homogeneous linear equations. The condition for a non-trivial solution of the system
yields again the equation det M+(ik) = 0, as expected, with det M+ written in terms of det M−
according to formula (57).

6. The Yamaguchi potential

As an example of application of the formalism developed in the preceding sections, we now
work out in detail a one-dimensional PT -symmetric version of the Yamaguchi potential [27],
originally aimed at describing bound and scattering states of the neutron–proton system. We
assume

g(x) = exp(−c|x|), h(y) = exp(−d|y|), (−∞ < x, y < +∞) (81)

with c and d positive constants, so that the Fourier transforms are

g̃(q) = 2c

c2 + q2
, h̃(q ′) = 2d

d2 + q ′2 . (−∞ < q, q ′ < +∞) (82)

and the PT -symmetric kernel reads

K(x, y) = e−c|x|+iax e−d|y|+iby, (83)

with a and b real constants. With the above definitions the basic integrals N
(1)
± from formula

(20) and N
(2)
± from formula (21), as well as their linear combinations S± = N

(1)
± + N

(2)
± and

D± = N
(1)
± − N

(2)
± , can be computed by elementary methods. We only quote the final results

N
(1)
± = − i

c
g̃(a ∓ k)

(a + b)c + (c + d)(a ∓ k)

(a + b)2 + (c + d)2
+

g̃(a ∓ k)̃h(b ± k)

2

(
1 + i

b ± k

d

)
, (84)

N
(2)
± = i

c
g̃(a ± k)

(a + b)c + (c + d)(a ± k)

(a + b)2 + (c + d)2
+

g̃(a ± k)̃h(b ∓ k)

2

(
1 − i

b ∓ k

d

)
. (85)

Formulae (85) become particularly simple when applied to the analysis of bound states: in
this case, we already know from the previous section that N

(2)
± (ik) = (

N
(1)
± (ik)

)∗
. Therefore,

S+ ≡ N
(1)
+ + N

(2)
+ = 2Re

(
N

(1)
+

)
and D+ ≡ N

(1)
+ − N

(2)
+ = 2i Im

(
N

(1)
+

)
; the left-hand side of

equation (79) thus becomes real in the interval −m < E < +m: bound state energies are roots
of the real equation

det M+ = 1 +
2(cV E + cSm)√

m2 − E2
Re

(
N(1)

+

) − (
c2
V − c2

S

)∣∣N(1)
+

∣∣2 = 0. (86)

If we put cS = 0 in the above equation, this allows us to derive the strength cV at which
the purely vector potential has a bound state at given real energy E; in fact, equation (86) can
be considered as a quadratic equation in cV , with real solutions

cV =
E Re(N(1)

+ )√
m2−E2 ±

√
E2(Re(N(1)

+ ))2

m2−E2 +
∣∣N(1)

+

∣∣2∣∣N(1)
+

∣∣2 . (87)

Note that one of the two solutions for cV is always positive.
In order to complete the discussion of bound state wavefunctions, we give the

corresponding expressions of integrals (74) and (75), obtained by elementary integration

e−kxI1(x) = θ(−x)
e(c+ia)x

c + k + ia
+ θ(x)

[
e−kx

c + k + ia
+

e(−c+ia)x − e−kx

−c + k + ia

]
,

(88)

ekxI2(x) = θ(−x)

[
ekx − e(c+ia)x

c − k + ia
+

ekx

c + k − ia

]
+ θ(x)

e(−c+ia)x

c + k − ia
.
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Figure 1. Square moduli of transmission and reflection coefficients versus energy (in units of
particle mass) for Yamaguchi potentials with a = 2, b = 1 , c = d = 1 and cV = cS = 5 m (upper
panels), or cV = −cS = 5 m (lower panels).

While possible bound state wavefunctions with real energy are eigenstates of PT ,
scattering wavefunctions never are, but show some interesting peculiarities related to
transmission resonances when cV = ±cS , which makes it worthwhile to focus our numerical
analysis on those cases. Figure 1 shows the square moduli of transmission coefficients,
|TL→R|2 = |TR→L|2 ≡ |T |2, and of reflection coefficients, |RL→R|2 and |RR→L|2, as functions
of total energy E for the following choices of potential parameters: a = 2, b = 1, c = d = 1
and cV = cS = 5 m (upper panels), or cV = −cS = 5 m (lower panels). E ranges from −5m

to +5m, but the coefficients are not calculated in the −m < E < +m interval, where they
might have poles corresponding to bound states. When cV = cS , there is a sharp transmission
resonance at E = −m, which appears at E = +m when cV = −cS , as expected from
the relation TL→R(cV , cS, E, k) = TL→R(−cV , cS,−E, k). These zero-energy resonances,
called half-bound states, have TL→R = TR→L = 1 and RL→R = RR→L = 0. In both cases,
the reflection coefficients show the handedness discussed in [10]: the potentials behave as
absorptive for progressive waves (|TL→R|2 +|RL→R|2 < 1) and generative for regressive waves
( |TR→L|2 + |RR→L|2 > 1 ). This pattern depends on the (common) sign of a and b: in fact,
owing to the form (6) of the kernel, where g(x) = e−c|x| and h(y) = e−d|y| are even functions
of their arguments, changing a into −a and b into −b is equivalent to a parity transformation
(x → −x and y → −y ), namely,

TL→R(−a,−b) = TR→L(a, b), RL→R(−a,−b) = RR→L(a, b). (89)

In our case, with a = −2 and b = −1, the potential would become generative for
progressive waves and absorptive for regressive ones. Handedness, however, is not a general
rule: figure 2 shows transmission and reflection coefficients for a = −2, b = +1, c = d = 1
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Figure 2. Square moduli of transmission and reflection coefficients versus energy (in units of
particle mass) for Yamaguchi potentials with a = −2, b = 1, c = d = 1 and cV = cS = 2 m
(upper panels), or cV = −cS = 2 m (lower panels).
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Figure 3. Denominator of the transmission coefficient for a scalar well with cS = −m, c = d = 1
at various values of a = b.

and cV = cS = 2 m (upper panels), or cV = −cS = 2 m (lower panels). In this case, both
|TL→R|2 + |RL→R|2 and |TR→L|2 + |RR→L|2 may be ≶1 in different energy intervals.
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As for bound states, they exist only in the lower panel cases of figures 1 and 2: when
cV = −cS = 5 m, a = 2, b = 1, c = d = 1 (figure 1) there is a real bound state with energy
εbs = +0.3835m, when cV = −cS = 2 m, a = −2, b = 1, c = d = 1 (figure 2), there is a real
bound state at εbs = 0.1815m. If a and b change, the bound states change their energies, but
they do not disappear, unless |a|, |b| → +∞. In this latter case, the kernel K(x, y) undergoes
such rapid oscillations in the x, or y directions that it becomes negligible on the average and
cannot sustain bound states any more. In this limit, |T | → 1 and |R| → 0.

As far as bound states are concerned, the structure of equation (86) shows that only
when cV = 0 det M+ does not depend on E, but on k only, so that, if kbs is a solution

of det M+(k) = 0, both energies εbs = ±
√

m2 − k
2
bs are acceptable. This is shown

in figure 3, where det M+(k) = 0 is solved graphically for a scalar well of strength
cS = −m, c = d = 1 and various values of a = b. With increasing the latter phases,
the two bound state energies quickly tend to the thresholds of continuum, ±m. For instance,
when a = b = 10, εbs = ±0.999 999 923m and, in the continuum of scattering states, the
potential is almost reflectionless.

7. Conclusions and perspectives

In this work we have studied non-local PT -symmetric potentials in the one-dimensional Dirac
equation. Owing to the fact that the definition of the S matrix adopted in our previous work
[11] dedicated to non-relativistic quantum mechanics is also valid in the relativistic case (see,
e.g., [28]), we have used in the present work general properties of the S matrix under P, T and
PT transformations derived in [11]. There are, of course, kinematical differences between
Schrödinger and Dirac formulations: in the latter case, total energies E can be either positive
or negative; scattering states have either E/m � −1 or E/m > +1, while bound states are
found in the interval −1 < E/m < +1.

The separable potential we have studied is very flexible, since, for instance, it permits
determining the real vector strength cV (with scalar strength cS = 0) that yields a bound state
at an energy E arbitrarily chosen in the [−m, +m] interval (see equations (79)–(86)).

Moreover, starting from the real kernel with real coupling strengths cV and cS and
a = b = 0, one can extend it in a natural way to the generalized Hermitian case, with g = h

and a = −b, and, finally, to the PT -symmetric case, with g and h even functions of their
arguments and arbitrary a and b.

The specific choice of the form factors g(x) = e−c|x| and h(y) = e−d|y| yields in the
non-relativistic case transmission and reflection coefficients that are rational functions of
momentum, k, since they can be written as ratios of polynomials in k. This opens the way to
an algebraic search for zeros of denominators, providing information on bound states, and of
numerators, e.g. of reflection coefficients (transparency at given momentum k), or transmission
coefficients (total reflectiveness at given k).

In the relativistic case the functional dependence is more involved, due to the square root
dependence on k of energy E =

√
k2 + m2. Nevertheless, it is interesting to remark that,

in addition to the study of properties of T and R at given cV and cS , one can study specific
properties such as absence of reflection or of transmission at given k as functions of cV and cS :
this can be easily done since transmission and reflection coefficients are, respectively, second
order polynomial in cV and/or cS over second order polynomial and first order over second
order.

Study of the zeros of the denominators has already been mentioned in connection with
bound states. In the present work, we have made an effective approach to PT symmetry,
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allowing for unitarity breaking of the scattering matrix. The search for a Hermitian equivalent
description would imply the definition of a charge conjugation operator C, in the spirit of
[3], or a metric operator η+, according to [6] and the study would be far from trivial. To our
knowledge, η+ in relativistic problems involving scattering states has been exactly determined
until now only for a non-Hermitian form of the Klein–Gordon equation, either free [29], or
with a minimally coupled electromagnetic field [30].

This kind of more fundamental study, however, would be more appropriate to finite-
range potentials with exact PT symmetry, i.e. having a purely real discrete spectrum with
eigenfunctions that are eigenstates of PT and reflectionless in the continuum, as discussed
in [11]. This could not be pursued for non-local potentials, but it could work for the PT -
symmetric generalization of local scalar, or pseudoscalar reflectionless potentials, like those
constructed in [31–32].

Appendix A

Here we explain the connection between the time-independent Green’s functions used in the
present work and the time dependent ones, which are solutions to the equation(

−iαx

∂

∂x
+ βm − i

∂

∂t

)
G(x, t; x ′, t ′) = δ(x − x ′)δ(t − t ′). (A.1)

We know from textbooks [33] that particular solutions to equation (A.1) are the retarded
component of the causal Green’s function

Gc
ret.(x, t; x ′, t ′) = θ(t − t ′)G+(x − x ′, t − t ′) (A.2)

and the advanced component

Gc
adv.(x, t; x ′, t ′) = θ(t ′ − t)G−(x − x ′, t − t ′), (A.3)

where θ(τ ) = 1 for τ > 0 and θ(τ ) = 0 for τ < 0.
By inserting formulae (A.2)–(A.3) into equation (A.1), we obtain

θ(±(t − t ′))(−iαx

∂

∂x
+ βm − i

∂

∂t
)G±(x − x ′, t − t ′)

+ iδ(t − t ′)G±(x − x ′, t − t ′) = δ(x − x ′)δ(t − t ′), (A.4)

where we have exploited the well-known relation ∂
∂t

θ(±(t − t ′)) = δ(t − t ′). Let us multiply
both sides of equation (A.4) by exp(iE(t − t ′)) and integrate them over u ≡ t − t ′ from -∞ to
+∞, with E a complex number whose imaginary part is chosen in such a way that the integral
exists: we must assume E+=E + iε for G+ and E−=E − iε for G−, with ε > 0. Thus, G+

satisfies the equation∫ +∞

0
du eiE+u

(
−iαx

∂

∂x
+ βm − i

∂

∂u

)
G+(x − x ′, u) − iG+(x − x ′, 0) = δ(x − x ′). (A.5)

The above equation can be simplified by integrating by parts the third integral on the
left-hand side

−i
∫ +∞

0
du eiE+u ∂

∂u
G+(x − x ′, u) = −i|eiE+uG+(x − x ′, u)

∣∣u=+∞
u=0

− E+

∫ +∞

0
du eiE+uG+(x − x ′, u) = iG+(x − x ′, 0)

− E+

∫ +∞

0
du eiE+uG+(x − x ′, u)
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and the function

G+(x − x ′) ≡
∫ +∞

0
du eiE+uG+(x − x ′, u) =

∫ +∞

0
du eiEu−εuG+(x − x ′, u), (A.6)

which is nothing but the Laplace transform of G+(x − x ′, t − t ′) with respect to time, satisfies
the equation (

−iαx

∂

∂x
+ βm − (E + iε)

)
G+(x − x ′) = δ(x − x ′) (A.7)

and can be identified with the Green’s function corresponding to the complex energy E + iε
for the time-independent Dirac equation.

We can proceed in the same way for G−(x − x ′, t − t ′), after introducing the complex
energy E− = E − iε∫ 0

−∞
du eiE−u

(
−iαx

∂

∂x
+ βm − i

∂

∂u

)
G−(x − x ′, u) + iG−(x − x ′, 0) = δ(x − x ′). (A.8)

After integrating by parts the third integral on the lhs of the above equation and defining
the Laplace transform with respect to time of G−(x − x ′, t ′ − t)

G−(x − x ′) ≡
∫ 0

−∞
du eiE−uG−(x − x ′, u) =

∫ +∞

0
dv e−iEv−εvG−(x − x ′,−v), (A.9)

we arrive at the equation satisfied by the time-independent Green’s function G−(x − x ′)(
−iαx

∂

∂x
+ βm − (E − iε)

)
G−(x − x ′) = δ(x − x ′). (A.10)

Equations (A.7)–(A.10) coincide with equation (7) of the text.

Appendix B

Formula (57) can be easily proved from definition (29), according to which

det M+ − det M− = i
cV E + cSm

k
(S+ + S−) +

c2
V − c2

S

4

(
D2

+ − D2
− − S2

+ + S2
−
)

= i
cV E + cSm

k

(
N(1)

+ + N(2)
+ + N

(1)
− + N

(2)
−

)
+

(
c2
V − c2

S

)(
N

(1)
− N

(2)
− − N(1)

+ N(2)
+

)
,

(B.1)

where integrals N
(1)
± and N

(2)
± are defined by formulae (20) and (21), respectively. We promptly

obtain from the definitions

N(1)
+ + N(2)

+ + N
(1)
− + N

(2)
− = 2

∫ +∞

−∞
dx h(x) eibx

∫ +∞

−∞
dx ′g(x ′) eiax ′

cos(k(x − x ′))θ(x − x ′)

+ 2
∫ +∞

−∞
dx h(x) eibx

∫ +∞

−∞
dx ′g(x ′) eiax ′

cos(k(x − x ′))θ(x ′ − x)

=
∫ +∞

−∞
dx h(x) eibx

∫ +∞

−∞
dx ′g(x ′) eiax ′

(eik(x−x ′) + e−ik(x−x ′))

= g̃(a − k)̃h(b + k) + g̃(a + k)̃h(b − k) (B.2)

and

N
(1)
− N

(2)
− − N(1)

+ N(2)
+ = −g̃(a − k)̃h(b + k)̃g(a + k)̃h(b − k)

+ g̃(a − k)̃h(b + k)N
(1)
− + g̃(a + k)̃h(b − k)N

(2)
− . (B.3)
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In deriving the last expression, the relation θ(−x) = 1 − θ(x) has been used in the
integrands. Inserting the right-hand sides of formulae (B.2)–(B.3) into formula (B.1) yield
formula (57) of the text.

It is worthwhile to point out that the definitions we have used and, consequently, the
relation between det M+ and det M− are also valid for complex k, in particular for k = ik, with
k > 0, characterizing bound states with real energy.
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[23] Dominguez-Adame F and González M A 1992 Physica B 176 180
[24] Bell J S and Ruegg H 1975 Nucl. Phys. B 98 151
[25] Ginocchio J N 1997 Phys. Rev. Lett. 78 436
[26] Ginocchio J N 2005 Phys. Rep. 414 165 and references therein
[27] Yamaguchi Y 1954 Phys. Rev. 95 1628
[28] Weinberg S 1995 The Quantum Theory of Fields, Vol I: Foundations (New York: Cambridge University Press)

chapter 3
[29] Mostafazadeh A 2003 Class. Quantum Grav. 20 155
[30] Mostafazadeh A and Zamani F 2006 Ann. Phys. 321 2183
[31] Toyama F M, Nogami Y and Zhao Z 1993 Phys. Rev. A 47 897
[32] Nogami Y and Toyama F M 1998 Phys. Rev. A 57 93
[33] Bogoliubov N N and Shirkov D V 1959 Introduction to the Theory of Quantized Fields (New York: Interscience)

chapter 14

21

http://dx.doi.org/10.1103/PhysRevLett.80.5243
http://dx.doi.org/10.1063/1.532860
http://dx.doi.org/10.1088/0034-4885/70/6/R03
http://dx.doi.org/10.1016/0003-4916(92)90284-S
http://dx.doi.org/10.1063/1.1418246
http://dx.doi.org/10.1088/1751-8113/41/24/244017
http://dx.doi.org/10.1103/PhysRevD.76.125003
http://dx.doi.org/10.1103/PhysRevD.78.025026
http://dx.doi.org/10.1088/1751-8113/41/29/292002
http://dx.doi.org/10.1016/j.physleta.2004.03.002
http://dx.doi.org/10.1016/j.aop.2006.05.011
http://dx.doi.org/10.1007/s10582-006-0390-1
http://dx.doi.org/10.1142/S0217732305017664
http://dx.doi.org/10.1088/0305-4470/39/23/L01
http://dx.doi.org/10.1016/j.physleta.2005.06.061
http://dx.doi.org/10.1088/0305-4470/39/38/013
http://dx.doi.org/10.1016/j.physleta.2007.03.069
http://dx.doi.org/10.1007/s10773-007-9490-3
http://dx.doi.org/10.1016/j.aop.2007.04.007
http://dx.doi.org/10.1016/j.physleta.2007.08.056
http://dx.doi.org/10.1103/PhysRevC.35.2262
http://dx.doi.org/10.1103/PhysRevC.38.1076
http://dx.doi.org/10.1016/0921-4526(92)90003-B
http://dx.doi.org/10.1016/0550-3213(75)90206-0
http://dx.doi.org/10.1016/j.physrep.2005.04.003
http://dx.doi.org/10.1103/PhysRev.95.1628
http://dx.doi.org/10.1088/0264-9381/20/1/312
http://dx.doi.org/10.1016/j.aop.2006.02.007
http://dx.doi.org/10.1103/PhysRevA.47.897
http://dx.doi.org/10.1103/PhysRevA.57.93

	1. Introduction
	2. Green's function approach
	3. Scattering matrix
	4. Symmetries and non-relativistic limits
	5. Bound states with real energy
	6. The Yamaguchi potential
	7. Conclusions and perspectives
	Appendix A
	Appendix B
	References

